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The structure of the water-hydrophobic interface is of funda-
mental interest for the understanding of biological and colloidal
systems. Due to the perturbation of the hydrogen bonding, the
structure of water near a hydrophobic surface is quite different from
the bulk; in particular, the presence of a density depletion layer at
the interface has been suggested.1-3 Direct experimental charac-
terization of this interface, however, is difficult, and the few reported
results are varied.4-7

Here, we report investigation of a water-hydrophobic interface
in nanochannels. Due to a large interface (∼102-103 m2/g), a
substantial amount of excess interfacial energy can be accumulated
in such systems,8 leading to interesting applications for storage and
dumping of mechanical energy.9 We studied the intrusion of water
in hydrophobic nanochannels (Figure 1), using the water porosim-
etry technique described in previous work.10 A series of ordered
mesoporous silicas (SBA type,RPore≈ 2-4 nm) was prepared and
hydrophobized with the monolayers of trimethylsilyl groups (TMS).
Using these well-defined porous solids as models, we demonstrated
that classical (macroscopic) theory fails to describe wetting at
nanoscale. The results suggested the presence of a thin vapor (low-
density) layer separating water and the hydrophobic surface.

A typical water intrusion (P-V) diagram (Figure 2) of the TMS-
silicas showed two steps: (i) filling of the interparticle voids (<3
MPa) and (ii) the pore filling with water (∼20-40 MPa). The values
of PINTR andVH2O showed virtually no dependence on the rate of
compression (∼4-27 MPa/min) or contact time (1-24 h), sug-
gesting that the process was close to the equilibrium.11 The values
of PINTR andVH2O are provided in the Supporting Information.

In classical theory of capillarity, the pressure required to push a
nonwetting liquid into a cylindrical pore with radius R is determined
by the Laplace equation:

whereγ is surface tension,Pl and PV are pressures in the liquid
and vapor phases, respectively. Using eq 1, one assumes that, inside
the pores, the liquid meets the solid at the angleθ, which is equal
to the macroscopic (Young’s) contact angle for the liquid on a flat
surface with composition similar to that inside the pores. This
assumption, although commonly made, is hardly valid, however,
as the profile of the liquid near the solid surface (∼nm range) is
complex and cannot be described by a single contact angle. We
found that eq 1 (using the advancing water contact angle of 106°,
a well-established value for the TMS monolayers12) gave intrusion
pressures∼1.5-2 times smaller than in the experiment (Figure 3).
The data would fit eq 1, once the “apparent water contact angle”
of ∼120° was assumed.13 We note, however, that the contact angle
∼120° is unreasonably high for the TMS surface and is rather

characteristic for surfaces of fluorinated alkyls.15 One may argue
that the contact angles in pores are increased due to the effects of
surface roughness. The surfaces prepared in this work are quite
smooth (Figure 1), and only subnanometer roughness can be present
inside the pores, which is too small to cause significant change in
the contact angles.† University of Delaware.

PINTR ) Pl - Pv ) -(2γ
R ) cosθ (1)

Figure 1. TEM micrographs of porous silica.

Figure 2. Water intrusion (P-V) diagram for the TMS-silica. Differential
plot dV/(d log P) (inset) shows peaks∼27 bar (interparticle voids) and
∼200 bar (pore filling).

Figure 3. Water intrusion pressure plotted vs 1/R of a hydrophobic pore.
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Our second observation that could not be explained from the
standpoint of classical capillarity was related to the pore volume.
The pore volumes of the TMS-silicas available to water (VH2O) were
notably smaller (on average∼60%) than the pore volumes measured
by nitrogen adsorption (VN2). Such a reduction in pore volume could
not be explained by the elastic deformations of silicas under
pressure. We determined the compressibility of the TMS-silicas to
be ∼10-4 MPa-1; thus, in the pressure range∼20-40 MPa, the
elastic deformation of the matrix is only∼2-4% (by volume).
Given the simple pore geometry, the observed difference in the
pore volumes suggests the presence of a layer of low-density fluid
separating the water from the pore walls (Figure 4). The thickness
of this layer can be determined as follows:

The values of thickness ranged from 0.42 to 0.64 nm with the
average value of 0.56( 0.09 nm.

The presence of a vapor (low-density) film separating water from
the hydrophobic walls can be rationalized in terms of Derjaguin’s
surface thermodynamics and disjoining pressure.16,17 In a hydro-
phobic pore, the vapor phase is the wetting fluid, which, at the
equilibrium, forms wetting film with thicknessh (Figure 4).18 For
water in a cylindrical hydrophobic pore, the pressure equilibrium
is determined by the balance of capillary pressure and disjoining
pressure (Π(h)) in the wetting film:

Treating the vapor film as a van der Waals fluid, the equation for
the disjoining pressureΠ(h))A/(6π‚h3) can be used:

whereA is the Hamaker constant. Using the values of the film
thicknessh obtained from the pore volume data (eq 2), the best fit
of the intrusion pressures gives∼7.5(1.8 × 10-20 J for the
Hamaker constant. This value is in a reasonable agreement with
the values expected for the hydrophobic solid interacting with water
across the vapor gap.19

In summary, the classical (macroscopic) theory of capillarity
(Laplace) fails to accurately describe the water-hydrophobic
interface in nanopores. The results suggest the presence of∼0.6
nm low-density fluid (vapor film) separating water from the
hydrophobic solid. The presence of this layer is rationalized in terms
of Derjaguin’s surface thermodynamics and disjoining pressure.
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Figure 4. Water (nonwetting fluid) in a hydrophobic pore is separated
from the walls by a thin layer of vapor/low-density film (wetting fluid).
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